

Evaluation of the Speech Resynthesis Capabilities of the VoicePrivacy Challenge Baseline B1

Ünal Ege Gaznepoglu, Nils Peters (ege.gaznepoglu@audiolabs-erlangen.de)

1. Introduction

Problem: Speaker anonymization systems sound unnatural

- Many systems build upon the VPC Baseline B1 [1]
- Similar speech representation (F0, x-vector, bottleneck features)
- Same vocoder (AM-NSF, HiFiGAN etc.)

Question: How to improve the naturalness? Which block is the culprit?

2. Methodology

- Four objective, intrusive metrics
- Mel-cepstral distortion (MCD): $\frac{6.1419}{T} \sum_{t=1}^{T} \sqrt{\sum_{i} (C_{t,i} \hat{C}_{t,i})^2}$
- Scale-invariant signal-to-noise ratio (SI-SNR): $\frac{|\alpha s|^2}{|\alpha s \hat{s}|^2}$, for $\alpha = \frac{\hat{s}^T s}{||s||^2}$
- Gross pitch error (GPE): $\frac{\text{num. of frames whose error} > 20\%}{\text{num. of correctly identified voiced frames}}$
- Perceptual evaluation of speech quality (PESQ)
- A non-intrusive estimate of PESQ by torchaudio-SQUIM [2]
- Subjective evaluation with a MUSHRA-like listening test

3. Evaluated Systems

We bypass the anonymization block and resynthesize VoicePrivacy Challenge (VPC) test datasets [3] with the following B1 variants:

ID	X-vector	Vocoder
mel-nsf-pt-spk	speaker-level	NSF
mel-nsf-spk	speaker-level	(C-based) NSF
mel-nsf-spk-4k	speaker-level	(C-based) NSF
am-nsf-spk	speaker-level	(C-based) AM + NSF
B1b-utt	utterance-level	joint NSF (+HiFiGAN-D)
B1b-spk	speaker-level	joint NSF (+HiFiGAN-D)
joint-hifigan-spk	speaker-level	joint HiFiGAN

Subjects commented joint-hifigan-nsf "Americanizes" the voices, unable to retain speaker characteristics

6. Conclusions

- 2020 systems (mel-nsf, am-nsf) perform better w.r.t. intrusive measures we considered (GPE, MCD, PESQ)
- Performance gap between copy synthesis (mel-nsf) and other systems → utilized representation causes additional information loss.
- torchSQUIM-PESQ estimate came the closest to predicting subjective preferences, whereas intrusive metrics could not predict them
- PyTorch and C implementations of am-nsf are not equivalent

Possible improvements:

- Additional incentive to help vocoders learn the speaker space
- Trying an improved speaker embedding (e.g., ECAPA as done by [4])

References

- [1] F. Fang et al., "Speaker anonymization using x-vector and neural waveform models," in Proc. 10th ISCA Speech Synthesis Workshop, 2019.
- [2] A. Kumar et al., "Torchaudio-squim: Reference-less speech quality and intelligibility measures in torchaudio," in *Proc. ICASSP*, 2023.
- [3] N. Tomashenko et al. "2nd VoicePrivacy challenge evaluation plan." (2022), [Online]. Available: https://arxiv.org/abs/2203.12468.
- [4] S. Meyer et al., "Speaker anonymization with phonetic intermediate representations," in *Proc. Interspeech Conf.*, 2022.

